Using Monodromy to Avoid High Precision
نویسندگان
چکیده
When solving polynomial systems with homotopy continuation, the fundamental numerical linear algebra computations become inaccurate when two paths are in close proximity. The current best defense against this ill-conditioning is the use of adaptive precision. While sufficiently high precision indeed overcomes any such loss of accuracy, high precision can be very expensive. In this article, we describe a simple heuristic rooted in monodromy that can be used to avoid the use of high precision.
منابع مشابه
Decomposing solution sets of polynomial systems: a new parallel monodromy breakup algorithm
We consider the numerical irreducible decomposition of a positive dimensional solution set of a polynomial system into irreducible factors. Path tracking techniques computing loops around singularities connect points on the same irreducible components. The computation of a linear trace for each factor certifies the decomposition. This factorization method exhibits a good practical performance o...
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملImproved numerical Floquet Multipliers
Abstract This paper studies numerical methods for linear stability analysis of periodic solutions in codes for bifurcation analysis of small systems of ordinary differential equations (ODEs). Popular techniques in use today (including the AUTO97 method) produce very inaccurate Floquet multipliers if the system has very large or small multipliers. These codes compute the monodromy matrix explici...
متن کاملDensity of monodromy actions on non-abelian cohomology
In this paper we study the monodromy action on the first Betti and de Rham nonabelian cohomology arising from a family of smooth curves. We describe sufficient conditions for the existence of a Zariski dense monodromy orbit. In particular we show that for a Lefschetz pencil of sufficiently high degree the monodromy action is dense.
متن کاملThe Regeneration of a 5-point
The braid monodromy factorization of the branch curve of a surface of general type is known to be an invariant that completely determines the diffeomorphism type of the surface (see [2]). Calculating this factorization is of high technical complexity; computing the braid monodromy factorization of branch curves of surfaces uncovers new facts and invariants of the surfaces. Since finding the bra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013